If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+172x-8=0
a = 25; b = 172; c = -8;
Δ = b2-4ac
Δ = 1722-4·25·(-8)
Δ = 30384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{30384}=\sqrt{144*211}=\sqrt{144}*\sqrt{211}=12\sqrt{211}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(172)-12\sqrt{211}}{2*25}=\frac{-172-12\sqrt{211}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(172)+12\sqrt{211}}{2*25}=\frac{-172+12\sqrt{211}}{50} $
| 1/8(x-7)=5 | | 4K+5=7k | | 5x+4=5x-10+7 | | 72=x-18 | | 2x-1+2x-1=x^2-1 | | 2.2t+3.5=-5.1t+6.4 | | 2(x+2)=4-(3-3x)=5 | | 2/7+7m/2=67/14 | | 2h+(-5)=5h | | -8+3u=-23 | | 2(x+3)+4=-12 | | -18=9t-15t | | 30-k+90=20k+110 | | 2h-5=5h | | k^2-12k-41=0 | | 90=4x | | 10+5a-3a=15 | | 2n+(2n+2)=126 | | 83=-3+2(-5n+8) | | |x-4|=9 | | 2x-x+5/4=3x-1/2+1 | | 10=2(z+2)+2 | | 5+5p=0 | | P(p)+6p=7 | | 4{x+3}=32 | | (5r^2+2r-16)=0 | | 536.06=190+1.21x | | 5-8x=9x+13 | | -7n+18=-6n-3 | | (5r^2=2r-16)=0 | | -5=1-3x+7 | | 4x/5-2=3 |